Projections of the dorsal motor nucleus of the vagus to cardiac ganglia of rat atria: An anterograde tracing study

Author(s):  
Zixi Cheng ◽  
Terry L. Powley ◽  
James S. Schwaber ◽  
Francis J. Doyle
2004 ◽  
Vol 286 (4) ◽  
pp. R625-R633 ◽  
Author(s):  
Zixi (Jack) Cheng ◽  
Hong Zhang ◽  
Shang Z. Guo ◽  
Robert Wurster ◽  
David Gozal

In previous single-labeling experiments, we showed that neurons in the nucleus ambiguus (NA) and the dorsal motor nucleus of the vagus (DmnX) project to intrinsic cardiac ganglia. Neurons in these two motor nuclei differ significantly in the size of their projection fields, axon caliber, and endings in cardiac ganglia. These differences in NA and DmnX axon cardiac projections raise the question as to whether they target the same, distinct, or overlapping populations of cardiac principal neurons. To address this issue, we examined vagal terminals in cardiac ganglia and tracer injection sites in the brain stem using two different anterograde tracers {1,1′-dioleyl-3,3,3′,3′-tetramethylindocarbocyanine methanesulfonate and 4-[4-(dihexadecylamino)-styryl]- N-methylpyridinium iodide} and confocal microscopy in male Sprague-Dawley rats. We found that 1) NA and DmnX neurons innervate the same cardiac ganglia, but these axons target separate subpopulations of principal neurons and 2) axons arising from neurons in the NA and DmnX in the contralateral sides of the brain stem enter the cardiac ganglionic plexus through separate bundles and preferentially innervate principal neurons near their entry regions, providing topographic mapping of vagal motor neurons in left and right brain stem vagal nuclei. Because the NA and DmnX project to distinct populations of cardiac principal neurons, we propose that they may play different roles in controlling cardiac function.


1991 ◽  
Vol 260 (1) ◽  
pp. R200-R207 ◽  
Author(s):  
H. R. Berthoud ◽  
N. R. Carlson ◽  
T. L. Powley

The gastrointestinal territories innervated by the gastric, celiac, and hepatic abdominal vagi were identified in rats with selective branch vagotomies by means of 1) anterograde tracing with the carbocyanine dye DiI injected into the dorsal motor nucleus and 2) measurement of cervical vagal stimulation-induced motility responses throughout the gut axis. Presence of DiI-labeled vagal terminals in the myenteric plexus and evoked motility responses were well correlated across the sampled gastrointestinal (GI) sites. In animals with only the two gastric branches intact, the entire stomach and the most proximal duodenum showed significant motility responses and were densely innervated, having DiI-labeled vagal terminals in almost every ganglion. The hepatic branch was found to primarily innervate the duodenum, with minor projections to the distal antral stomach and the intestines. The two celiac branches were found to almost exclusively innervate the jejunum, ileum, cecum and entire colon, and, together with the other vagal branches, the duodenum. Therefore, while there is some degree of specific innervation by the abdominal vagal branches of the oral-to-anal gut axis, which could be called "viscerotopic," the considerably overlapping innervation of the duodenum does not satisfy a viscerotopy criterion and needs further functional analysis.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Xinyan Gao ◽  
Yongfa Qiao ◽  
Baohui Jia ◽  
Xianghong Jing ◽  
Bin Cheng ◽  
...  

Previous studies have demonstrated the efficacy of electroacupuncture at ST36 for patients with gastrointestinal motility disorders. While several lines of evidence suggest that the effect may involve vagal reflex, the precise molecular mechanism underlying this process still remains unclear. Here we report that the intragastric pressure increase induced by low frequency electric stimulation at ST36 was blocked by AP-5, an antagonist of N-methyl-D-aspartate receptors (NMDARs). Indeed, stimulating ST36 enhanced NMDAR-mediated, but not 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic-acid-(AMPA-) receptor-(AMPAR-) mediated synaptic transmission in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV). We also identified that suppression of presynapticμ-opioid receptors may contribute to upregulation of NMDAR-mediated synaptic transmission induced by electroacupuncture at ST36. Furthermore, we determined that the glutamate-receptor-2a-(NR2A-) containing NMDARs are essential for NMDAR-mediated enhancement of gastric motility caused by stimulating ST36. Taken together, our results reveal an important role of NMDA receptors in mediating enhancement of gastric motility induced by stimulating ST36.


Neurology ◽  
2006 ◽  
Vol 66 (7) ◽  
pp. 1100-1102 ◽  
Author(s):  
K. J. Klos ◽  
J. E. Ahlskog ◽  
K. A. Josephs ◽  
H. Apaydin ◽  
J. E. Parisi ◽  
...  

The authors assessed the frequency of spinal cord α-synuclein pathology in neurologically asymptomatic individuals older than 60 years of age (N = 106). Using α-synuclein immunohistochemistry, nine cases (8%) had incidental Lewy neurites in the intermediolateral column and at least some α-synuclein pathology in the dorsal motor nucleus of the vagus, locus ceruleus, and central raphe nucleus. Sparse α-synuclein pathology was also detected in the substantia nigra, basal forebrain, amygdala, or cortex in all but two cases.


Sign in / Sign up

Export Citation Format

Share Document